Rumphellatin D, a Novel Chlorinated Caryophyllane from Gorgonian Coral Rumphella antipathies

Ping-Jyun Sung,*^{1,2,3} Yin-Di Su,^{1,2} Tsong-Long Hwang,⁴ Li-Fan Chuang,^{1,2,5}

Jih-Jung Chen,⁶ Jan-Jung Li,¹ Lee-Shing Fang,⁷ and Wei-Hsien Wang^{1,8}

¹Taiwan Coral Research Center (TCRC), National Museum of Marine Biology & Aquarium (NMMBA),

Checheng, Pingtung 944, Taiwan

²Graduate Institute of Marine Biotechnology, National Dong Hwa University (NDHU), Checheng, Pingtung 944, Taiwan

³Asia-Pacific Ocean Research Center (APORC), National Sun Yat-sen University (NSYSU), Kaohsiung 804, Taiwan

⁴Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan

⁵Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan

 6 Department of Pharmacy, Tajen University, Pingtung 907, Taiwan

⁷Department of Sport, Health, and Leisure, Cheng Shiu University, Kaohsiung 833, Taiwan

⁸Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan

(Received September 22, 2008; CL-080907; E-mail: pjsung@nmmba.gov.tw)

The first chloride-containing caryophyllane-type sesquiterpenoid, designated as rumphellatin D (1), was isolated from gorgonian coral Rumphella antipathies. The structure of 1 was established by spectral-data analysis. Rumphellatin D (1) showed moderate inhibitory effects on elastase release by human neutrophils.

Previous chemical investigations of gorgonian coral R. antipathies have revealed a series of interesting caryophyllane derivatives, including kobusone,¹ isokobusone,² rumphellatins $A-C₁^{3,4}$ and rumphellolides A–G.^{5,6} Caryophyllane-type natural products exist widely in terrestrial plants, but are rarely found in marine organisms. $7-9$

We describe herein the isolation, structure determination, and bioactivity of an unprecedented sesquiterpenoid, rumphellatin D (1) (Chart 1), a chlorinated caryophyllane, from the further studies of R. antipathies.

Sliced bodies of R. antipathies (wet weight 402 g, dry weight 144 g) were extracted with a mixture of MeOH and $CH₂Cl₂$ (1:1). The extract was partitioned between hexane and 9:1 MeOH-H₂O; the MeOH-H₂O layer was diluted to 1:1 MeOH–H₂O and further partitioned against CH_2Cl_2 . The CH₂Cl₂ layer was separated on a silica gel column and purified by normal phase HPLC to afford 1 (0.9 mg, acetone–hexane, 4:1).

Rumphellatin D (1), $[\alpha]_D^{25}$ -4 (c = 0.05, CHCl₃), was isolated as a colorless oil that gave a sodiated molecule $(M + Na)^+$ at m/z 309.1234 in the HRESIMS, indicating the molecular formula $C_{15}H_{23}^{35}ClO_3$ (calcd $C_{15}H_{23}ClO_3 + Na$,

Chart 1.

309.1233) and implying four degrees of unsaturation. IR absorptions were observed at 3417 and 1709 cm^{-1} , suggesting the presence of hydroxy and ketone groups in 1. The 13 C NMR and DEPT spectra of 1 (Table 1) showed that this compound has 15 carbons, including three methyls, five $sp³$ methylenes (including a chlorinated methylene), three $sp³$ methines (including an oxymethine), four quaternary carbons (including two oxygenated quaternary carbons and a ketone carbonyl). Thus, from the ¹³C NMR data, one degree of unsaturation was accounted for, and 1 must be tricyclic. The presence of an epoxide containing a methyl substituent was confirmed from the signals of two oxygen-bearing carbons at δ 63.3 (s, C-4) and 62.8 (d, CH-3), and further supported by the proton chemical shifts of an oxymethine (δ 3.02, H-3) and a methyl singlet resonating at δ 1.65 (H₃-12). In addition, two germinal methyls, a pair of chlorinated methylene protons, four pairs of aliphatic methylene protons, and two

Table 1. ¹H and ¹³C NMR data and HMBC correlations for 1

$\rm ^1H^a/\delta$	$13C^b/\delta$	HMBC $(H\rightarrow C)$
2.20 ddd $(12.8, 8.0, 1.6)^c$	40.1 (d) ^d	$C-2, -8, -9$
1.13 ddd (14.8, 12.8, 9.2)	30.5(t)	$C-3, -4, -9, -11$
2.15 ddd $(14.8, 4.8, 1.6)$		$C-1, -3, -4, -11$
3.02 dd $(9.2, 4.8)$	62.8 (d)	$C-2$
	63.3 (s)	
	206.9(s)	
2.75 m	37.8(t)	$C-5, -7, -8$
2.30 m		$C-5, -7, -8$
2.82 dd $(9.6, 3.2)$	31.5(t)	$C-5, -6, -8, -9$
$2.38 \; \mathrm{m}$		$C-5$, -6 , -8 , -13
	83.1 (s)	
1.85 ddd $(8.0, 8.0, 8.0)$	41.3 (d)	$C-1$, -2 , -8 , -10 , -13
1.60 dd $(10.4, 8.0)$	35.3(t)	$C-1$ -11 , -15
1.92 dd $(10.4, 8.0)$		$C-8, -9, -14, -15$
	33.4(s)	
1.65 s	19.4 (q)	$C-3, -4, -5$
3.49 br s $(2H)$	65.2(t)	$C-7$
1.04 s		29.1 (q) $C-1$, -10 , -11 , -15
0.93 s		23.6 (q) C-1, -10, -11, -14

Spectra recorded at $a400$ and $b100$ MHz in CDCl₃ at 25 °C. respectively. \mathcal{C} values (in Hz) in parentheses. ^dMultiplicity deduced by DEPT and indicated by usual symbols.

Figure 1. The ${}^{1}H-{}^{1}H$ COSY and selective HMBC correlations (protons and quaternary carbons) of 1.

aliphatic methine protons were observed in the 1 H NMR spectrum of 1 (Table 1).

From the ${}^{1}H-{}^{1}H$ COSY experiment of 1 (Figure 1), it was possible to establish the spin systems that map out the proton sequences from H-1/H₂-2, H₂-2/H-3, H₂-6/H₂-7, H-9/H₂-10, and H-9/H-1. Based on these data and the HMBC correlations observed between H-1/C-2, -8, -9; H₂-2/C-1, -3, -4, -9; H-3/C-2; H_2 -6/C-5, -7, -8; H_2 -7/C-5, -6, -8, -9; and H-9/C-1, -2, -8 (Figure 1 and Table 1), the connectivity from C-1 to C-9 within the nine-membered ring was established. The presence of a methyl group attached at C-4 was confirmed by the HMBC correlations between H_3 -12/C-3, -4, -5. A cyclobutane ring, which is fused to the nine-membered ring at C-1 and C-9, was elucidated by analyzing the HMBC correlations between $H_2-2/C-11$; H- $9/C-10$; and H₂-10/C-1, -8, -9. The ketone group positioned at C-5 was confirmed by the HMBC correlations between H_2 -6, H_2 -7, H_3 -12, and the C-5 ketone carbonyl (δ 206.9, s). The methylene unit at δ 65.2 (t) was more shielded than would be expected for an oxygenated C-atom and was correlated to the methylene protons at δ 3.49 (2H, br s) in the HMQC spectrum. The latter methylene signals were ³J-correlated with C-7 (δ 31.5, t), proving the attachment of a chloromethyl group at C-8 (Figure 1 and Table 1). Thus, the remaining hydroxy group had to be attached at C-8, an oxygenated quaternary carbon resonating at δ 83.1 (s).

The relative stereochemistry of five chiral centers at C-1, -3, -4, -8, and C-9 in 1 was elucidated by analysis of NOESY interactions (Figure 2) and vicinal ${}^{1}H-{}^{1}H$ coupling constants. The trans geometry of H-1 (δ 2.20, ddd, $J = 12.8, 8.0, 1.6$ Hz) and H-9 (δ 1.85, ddd, $J = 8.0$, 8.0, 8.0 Hz) is indicated by an 8.0 Hz coupling constant between these two ring juncture protons, and H-9 and H-1 were assigned as α - and β -oriented, respectively. It was found that H-9 showed correlations with H_2 -13 but not with H-1, indicating that H_2 -13 should be positioned on the α -face as well. A triple doublet coupling was found between H-1/H-9 ($J = 8.0$ Hz) and H-1/H-2 α/β ($J = 12.8$, 1.6 Hz). By molecular modeling and dihedral angle analysis, the proton chemical shift appearing at δ 1.13 and 2.15 should be assigned as H-2 α and H-2 β , respectively. Furthermore, the

Figure 2. Selective NOESY correlations of 1.

epoxy proton H-3 was found to interact with H-2 β and H₃-12, revealing the cis geometry of trisubstituted epoxy group and this group should be α -oriented in the nine-membered ring. On the basis of the above findings, the structure of 1 was established and the configurations of the chiral centers of 1 were assigned as 1R*, 3S*, 4S*, 8R*, 9S*.

It is worth noting that rumphellatin $D(1)$ is the first caryophyllane-type sesquiterpenoid possessing a chloride atom and this compound was found to show 27.2% inhibitory effects on human neutrophil elastase release at $10 \mu g/mL$.

This research was supported by grants from the TCRC, NMMBA (Nos. 97100107 and 971001101); APORC, NSYSU (No. 96C031702); and NSTPBP, National Science Council (Nos. NSC 97-2323-B-291-001 and 95-2320-B-291-001- MY2), Taiwan, awarded to P.-J.S.

References

- 1 L.-F. Chuang, T.-Y. Fan, J.-J. Li, P.-J. Sung, Biochem. Syst. Ecol. 2007, 35, 470.
- 2 L.-F. Chuang, T.-Y. Fan, J.-J. Li, J. Kuo, L.-S. Fang, W.-H. Wang, P.-J. Sung, Platax 2007, 4, 61.
- 3 P.-J. Sung, L.-F. Chuang, J. Kuo, T.-Y. Fan, W.-P. Hu, Tetrahedron Lett. 2007, 48, 3987.
- 4 P.-J. Sung, L.-F. Chuang, W.-P. Hu, Bull. Chem. Soc. Jpn. 2007, 80, 2395.
- 5 P.-J. Sung, L.-F. Chuang, J. Kuo, J.-J. Chen, T.-Y. Fan, J.-J. Li, L.-S. Fang, W.-H. Wang, Chem. Pharm. Bull. 2007, 55, 1296.
- 6 P.-J. Sung, L.-F. Chuang, T.-Y. Fan, H.-N. Chou, J. Kuo, L.-S. Fang, W.-H. Wang, Chem. Lett. 2007, 36, 1322.
- 7 M. R. Kernan, R. C. Cambie, P. R. Bergquist, J. Nat. Prod. 1990, 53, 1353.
- 8 G.-H. Wang, A. F. Ahmed, J.-H. Sheu, C.-Y. Duh, Y.-C. Shen, L.-T. Wang, J. Nat. Prod. 2002, 65, 887.
- 9 A.-F. Ahmed, J.-H. Su, R.-T. Shiue, X.-J. Pan, C.-F. Dai, Y.-H. Kuo, J.-H. Sheu, J. Nat. Prod. 2004, 67, 592.